Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 44(7): 2365-2385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32583881

RESUMO

The mechanism of heat priming, triggering alteration of secondary metabolite pathway fluxes and pools to enhance heat tolerance is not well understood. Achillea millefolium is an important medicinal herbal plant, rich in terpenoids and phenolics. In this study, the potential of heat priming treatment (35°C for 1 hr) to enhance tolerance of Achillea plants upon subsequent heat shock (45°C for 5 min) stress was investigated through recovery (0.5-72 hr). The priming treatment itself had minor impacts on photosynthesis, led to moderate increases in the emission of lipoxygenase (LOX) pathway volatiles and isoprene, and to major elicitation of monoterpene and benzaldehyde emissions in late stages of recovery. Upon subsequent heat shock, in primed plants, the rise in LOX and reduction in photosynthetic rate (A) was much less, stomatal conductance (gs ) was initially enhanced, terpene emissions were greater and recovery of A occurred faster, indicating enhanced heat tolerance. Additionally, primed plants accumulated higher contents of total phenolics and condensed tannins at the end of the recovery. These results collectively indicate that heat priming improved photosynthesis upon subsequent heat shock by enhancing gs and synthesis of volatile and non-volatile secondary compounds with antioxidative characteristics, thereby maintaining the integrity of leaf membranes under stress.


Assuntos
Achillea/fisiologia , Fenóis/metabolismo , Terpenos/metabolismo , Termotolerância/fisiologia , Achillea/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Flavonoides/metabolismo , Resposta ao Choque Térmico/fisiologia , Lipoxigenase/metabolismo , Pentosefosfatos/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/fisiologia , Proantocianidinas/metabolismo , Metabolismo Secundário , Fosfatos Açúcares/metabolismo , Compostos Orgânicos Voláteis/metabolismo
2.
Phytochemistry ; 162: 90-98, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30875522

RESUMO

This study investigated the effect of drought stress on the amount of phenolic and flavonoid compounds as well as H2O2 and malondialdehyde (MDA) in Achillea pachycephala. The expression patterns of the key genes and their molecular mechanisms in the phenylpropanoid pathway (PAL, CHS, CHI, F3H, F3'H, F3'5'H, FLS) were also assessed during drought stress using quantitative real-time polymerase chain reaction (qRT-PCR). The samples were harvested at 0, 7, 14, 21 and 28 days after exposure to drought stress. High-performance liquid chromatography (HPLC) analysis was performed to determine the changes of phenolic and flavonoid compounds - chlorogenic acid, caffeic acid, rutin, luteolin-7-O-glycoside, 1,3-dicaffeoylquinic acid, apigenin-7-O-glycoside, luteolin, apigenin and kaempferol - during stress conditions. Concentrations of most of the compounds increased with increasing drought stress duration. Most of the phenolic acids continued to accumulate with increasing duration of stress, while flavonoids dramatically decreased at day 28 of stress. Chlorogenic acid was the most abundant phenolic acid (4.97 mg/100 g dry weight [DW]) at the beginning of the experiment, while it decreased at day 7 and increased again at day 21. However, different trends were observed for some flavonoids, such as luteolin and apigenin. At the beginning of stress treatment, high accumulation of free radicals (H2O2) and lipid peroxidation (MDA) led to elevated expression of most of the flavonoid genes. MDA increased from 22.66 to 43.28 µmol g-1 DW at day 28. CHS gene expression was elevated at day 7, while chi gene expression remained unchanged. At the end of the stress period, most of the flavonoid concentrations and expression of the relevant genes also increased. The results can facilitate selection of appropriate drought conditions to obtain the highest levels of flavonoids such as luteolin and apigenin and phenolic compounds such as chlorogenic acid for improved health benefits.


Assuntos
Achillea/genética , Achillea/metabolismo , Secas , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Polifenóis/metabolismo , Estresse Fisiológico , Achillea/fisiologia , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos
3.
J Anim Ecol ; 85(2): 396-408, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26428739

RESUMO

A common structural feature of natural communities is the non-random distribution of pairwise interactions between organisms of different trophic levels. For plant-animal interactions, it is predicted that both stochastic processes and functional plant traits that facilitate or prevent interactions are responsible for these patterns. However, unbiased manipulative field experiments that rigorously test the effects of individual traits on community structure are lacking. We address this gap by manipulating floral scent bouquets in the field. Manipulation of floral scent bouquets led to quantitative as well as qualitative restructuring of flower-visitor networks, making them more generalized. Olfactometer trials confirmed both positive and negative responses to scent bouquets. Our results clearly show that the distribution of insect visitors to the two abundant study plant species reflects the insects' species-specific preferences for floral scents, rather than for visual or morphological floral traits. Thus, floral scents may be of major importance in partitioning flower-visitor interactions. Integrating experimental manipulations of plant traits with field observations of interaction patterns thus represents a promising approach for revealing the processes that structure species assemblages in natural communities.


Assuntos
Abelhas/fisiologia , Dípteros/fisiologia , Flores/fisiologia , Odorantes , Polinização , Achillea/fisiologia , Animais , Áustria , Cirsium/fisiologia , Alemanha , Olfatometria
4.
Appl Biochem Biotechnol ; 178(4): 796-809, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26541161

RESUMO

The changes in total phenolic content (TPC), total flavonoid content (TFC), proline, malondialdehyde (MDA), H2O2, and antioxidant activity were assessed based on three model systems in three Achillea species (Achillea millefolium, A. nobilis, and A. filipendulina) growing under four irrigation regimes, including 100% FC (field capacity as normal irrigation) 75% FC (low stress), 50% FC (moderate stress), and 25% FC (severe stress) conditions. The highest TPC (47.13 mg tannic acid/g DW) and TFC (20.86 mg quercetin/g W) were obtained in A. filipendulina under moderate and severe stress conditions. In 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the highest and the lowest antioxidant activity was obtained for A. millefolium (70.28%) and A. filipendulina (53.21%), respectively, while in the FTC model system A. nobilis revealed the highest antioxidant activity (1.934) in severe drought condition. In the linoleic model system, the highest antioxidant activity was observed under low drought stress condition in A. nobilis. MDA and H2O2 content were increased due to both low (75% FC) and moderate (50% FC) drought stress, but they were decreased under severe stress condition (25% FC). Furthermore, A. millefolium revealed the lowest H2O2 (4.96 nm/g FW) and MDA content (176.32 µmol/g). Investigation of the relationship among different metabolites showed a strong positive correlation with TPC and TFC. Finally, the moderate drought stress treatment (50% FC) was introduced as the optimum condition to obtain appreciable TPC and TFC,, while the highest antioxidant activity was obtained in severe stress condition (25%FC).


Assuntos
Achillea/fisiologia , Antioxidantes/metabolismo , Secas , Peroxidação de Lipídeos , Fenóis/metabolismo , Estresse Fisiológico , Achillea/metabolismo , Flavonoides/metabolismo , Peróxido de Hidrogênio/metabolismo
5.
PLoS One ; 10(10): e0141857, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26517125

RESUMO

The evolution of increased competitive ability (EICA) hypothesis predicts that escape from intense herbivore damage may enable invasive plants to evolve higher competitive ability in the invasive range. Below-ground root herbivory can have a strong impact on plant performance, and invasive plants often compete with multiple species simultaneously, but experimental approaches in which EICA predictions are tested with root herbivores and in a community setting are rare. Here, we used Brassica nigra plants from eight invasive- and seven native-range populations to test whether the invasive-range plants have evolved increased competitive ability when competing with Achillea millefolium and with a community (both with and without A. millefolium). Further, we tested whether competitive interactions depend on root herbivory on B. nigra by the specialist Delia radicum. Without the community, competition with A. millefolium reduced biomass of invasive- but not of native-range B. nigra. With the community, invasive-range B. nigra suffered less than native-range B. nigra. Although the overall effect of root herbivory was not significant, it reduced the negative effect of the presence of the community. The community produced significantly less biomass when competing with B. nigra, irrespective of the range of origin, and independent of the presence of A. millefolium. Taken together, these results offer no clear support for the EICA hypothesis. While native-range B. nigra plants appear to be better in dealing with a single competitor, the invasive-range plants appear to be better in dealing with a more realistic multi-species community. Possibly, this ability of tolerating multiple competitors simultaneously has contributed to the invasion success of B. nigra in North America.


Assuntos
Brassica/fisiologia , Herbivoria , Espécies Introduzidas , Achillea/fisiologia , Animais , Biomassa , Dípteros/fisiologia , Seleção Genética
6.
Ecology ; 96(3): 788-99, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26236874

RESUMO

It has long been recognized that plant species and soil microorganisms. are tightly linked, but understanding how different species vary in their effects on soil is currently limited. In this study, we identified those. plant characteristics (identity, specific functional traits, or resource acquisition strategy) that were the best predictors of nitrification and denitrification processes. Ten plant populations representing eight species collected from three European grassland sites were chosen for their contrasting plant trait values and resource acquisition strategies. For each individual plant, leaf and root traits and the associated potential microbial activities (i.e., potential denitrification rate [DEA], maximal nitrification rate [NEA], and NH4+ affinity of the microbial community [NHScom]) were measured at two fertilization levels under controlled growth conditions. Plant traits were powerful predictors of plant-microbe interactions, but relevant plant traits differed in relation to the microbial function studied. Whereas denitrification was linked to the relative growth rate of plants, nitrification was strongly correlated to root trait characteristics (specific root length, root nitrogen concentration, and plant affinity for NH4+) linked to plant N cycling. The leaf economics spectrum (LES) that commonly serves as an indicator of resource acquisition strategies was not correlated to microbial activity. These results suggest that the LES alone is not a good predictor of microbial activity, whereas root traits appeared critical in understanding plant-microbe interactions.


Assuntos
Achillea/fisiologia , Nitrogênio/metabolismo , Poaceae/fisiologia , Microbiologia do Solo , Áustria , Desnitrificação , Inglaterra , França , Nitrificação , Solo/química
7.
PLoS One ; 9(9): e108873, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268503

RESUMO

Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants.


Assuntos
Achillea/fisiologia , Campanulaceae/fisiologia , Ecossistema , Oligoquetos/fisiologia , Achillea/crescimento & desenvolvimento , Animais , Biomassa , Campanulaceae/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Dinâmica Populacional , Solo/química
9.
Proc Natl Acad Sci U S A ; 108(17): 7096-101, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21402904

RESUMO

Chromosome evolution in flowering plants is often punctuated by polyploidy, genome duplication events that fundamentally alter DNA content, chromosome number, and gene dosage. Polyploidy confers postzygotic reproductive isolation and is thought to drive ecological divergence and range expansion. The adaptive value of polyploidy, however, remains uncertain; ecologists have traditionally relied on observational methods that cannot distinguish effects of polyploidy per se from genic differences that accumulate after genome duplication. Here I use an experimental approach to test how polyploidy mediates ecological divergence in Achillea borealis (Asteraceae), a widespread tetraploid plant with localized hexaploid populations. In coastal California, tetraploids and hexaploids occupy mesic grassland and xeric dune habitats, respectively. Using field transplant experiments with wild-collected plants, I show that hexaploids have a fivefold fitness advantage over tetraploids in dune habitats. Parallel experiments with neohexaploids--first-generation mutants screened from a tetraploid genetic background--reveal that a 70% fitness advantage is achieved via genome duplication per se. These results suggest that genome duplication transforms features of A. borealis in a manner that confers adaptation to a novel environment.


Assuntos
Achillea/fisiologia , Adaptação Fisiológica/fisiologia , Cromossomos de Plantas/metabolismo , Ecossistema , Dosagem de Genes , California , Cromossomos de Plantas/genética , Poliploidia
10.
Oecologia ; 165(1): 169-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20607293

RESUMO

The presence of small-scale patches of soil resources has been predicted to increase competition, because multiple species will proliferate roots in the same small area, and therefore decrease plant diversity. I tested whether such patches reduced species evenness in a community of four old-field species, both with and without interspecific interactions. In species mixtures, patches reduced evenness, while in "communities" constructed via combined monocultures, in which species did not compete, patches increased evenness. Therefore, the reduction in evenness in response to patches was due to changes in competition. Community-level changes may be attributable to plant foraging traits-in species with low foraging precision, competition reduced abundance much more in patchy soils than in even soils, while in species with high root foraging precision, the effect of competition was similar in patchy and even soils.


Assuntos
Achillea/fisiologia , Aster/fisiologia , Chrysanthemum/fisiologia , Ecossistema , Festuca/fisiologia , Solo , Achillea/crescimento & desenvolvimento , Aster/crescimento & desenvolvimento , Chrysanthemum/crescimento & desenvolvimento , Festuca/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Dinâmica Populacional , Especificidade da Espécie
11.
Proc Natl Acad Sci U S A ; 106(12): 4747-51, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19264964

RESUMO

All organisms must find and consume resources to live, and the strategies an organism uses when foraging can have significant impacts on their fitness. Models assuming optimality in foraging behavior, and which quantitatively account for the costs, benefits, and biological constraints of foraging, are common in the animal literature. Plant ecologists on the other hand have rarely adopted an explicit framework of optimality with respect to plant root foraging. Here, we show with a simple experiment that the marginal value theorem (MVT), one of the most classic models of animal foraging behavior, can provide novel insights into the root foraging behavior of plants. We also discuss existing data in the literature, which has not usually been linked to MVT to provide further support for the benefits of an optimal foraging framework for plants. As predicted by MVT, plants invest more time and effort into highly enriched patches than they do to low-enriched patches. On the basis of this congruency, and the recent calls for new directions in the plant foraging literature, we suggest plant ecologists should work toward a more explicit treatment of the idea of optimality in studies of plant root foraging. Such an approach is advantageous because it forces a quantitative treatment of the assumptions being made and the constraints on the system. While we believe significant insight can be gained from the use of preexisting models of animal foraging, ultimately plant ecologists will have to develop taxa-specific models that account for the unique biology of plants.


Assuntos
Achillea/crescimento & desenvolvimento , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Achillea/fisiologia , Raízes de Plantas/fisiologia , Fatores de Tempo
12.
Oecologia ; 153(1): 145-52, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17447085

RESUMO

The responses of plant roots to nutrient patches in soil may be an important component of competitive ability. In particular, the scale, precision, and rate of foraging for patchy soil resources may influence competitive ability in heterogeneous soils. In a target-neighbor experiment in the field, per-individual and per-gram competitive effects were measured for six old-field species with known root foraging scale, precision, and rate. The presence and number of nutrient patches were also manipulated in a full factorial design. Number and presence of patches did not influence the outcome of competition. Competitive ability was not related to total plant size, growth rate, or root:shoot allocation, or to root foraging precision. Per-individual competitive effects were marginally correlated with root foraging scale (biomass of roots) and root foraging rate (time required to reach a patch). Therefore, competitive ability was more closely related to ability to quickly fill a soil volume with roots than to ability to preempt resource-rich patches.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Solo , Achillea/fisiologia , Aster/fisiologia , Bromus/fisiologia , Centaurea/fisiologia , Chrysanthemum/fisiologia , Fertilizantes , Festuca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...